SAILOR OF THE STARS

Many students are curious about space and how you really get there. More and more students want to be involved in the space program and many will be, if not directly then indirectly, by having careers in NASA and related industries. Astronaut is a Greek word meaning "sailor of the stars." SAILOR OF THE STARS is a simulation that exposes your students to the life of an astronaut. Your students will tackle a variety of assignments as they apply for a position in the space program, go through astronaut candidate training, train with their crew, build a simple rocket and participate in a launch, work and live in space, work together with their crew to land, and debrief. Be ready for your students to be engaged, excited, and challenged as they work in this simulation.

SAILOR OF THE STARS consists of eight distinct phases. Each phase is labeled by a letter of The Phonetic Alphabet used by all Aeronautics, Military, and Space agencies.

Phase 1: ALPHA—Wanted a Few Good...Astronauts provides many opportunities for developing Language Arts skills. Students read a classified ad which describes the four space shuttle positions currently available through NASA. Students write a business letter requesting an application and complete the application. In student pairs, they conduct an interview and are interviewed for their respective position. Following the interview, students are selected as astronaut candidates. Students create a business card and name badge to use in their new position. *Optional activities:* students write to a real astronaut; students create a pop up of a real astronaut and hold a press conference to introduce their selected astronaut.

Phase 2: BRAVO—Training the Astronaut provides the astronaut candidate training framework within which students explore curriculum in the areas of science and technology, language arts, social studies, and math. Students read about the science and technology related to the space program and complete a comparison between vehicles on earth and in space. Students complete research and write a mini-brief on a NASA Field Center. Students read about the history of space exploration and complete a space history puzzle. Students complete a math activity solving a variety of space-related problems. Optional activities: students give oral reports on their research/mini-briefs; students write a song teaching others about the space shuttle; students locate the various NASA field centers on the United States map; students write a mini-brief on space history; students write a letter informing an organization that their space canister will not be boarded on the shuttle; students complete additional mathematical calculations; students plot a meaningful course through their school and/or campus; students participate in career day, listening to professionals give presentations about their career choices.

SPACE EXPLORATION THROUGH THE AGES (1)

SAILOR OF THE STARS

1500 B.C.E.	Babylonians recognize 18-year cycle for lunar eclipses		
540 B.C.E.	Babylonians divide the heavens into twelve constellations (the zodiac) to enable their priests to make predictions		
350 B.C.E.	Aristotle establishes an Earth-centered universe		
270 B.C.E.	Aristarchus of Samos proposes a Sun-centered universe		
140 B.C.E.	Ptolemy explains the motion of the heavens in an Earth-centered universe		
C.E. 813	Arabs start a school of astronomy in Baghdad		
850	Arabs perfect astrolabe		
1150	Chinese develop first rockets		
1543	Copernicus explains planetary motion in Sun-centered universe		
1580	Brahe begins observations of the planets		
1609	Kepler publishes Astronomia Nova which contains his first two laws		
1610	Galileo reports his telescopic observations		
1655	Huygens discovers Titan and two years later the rings around Saturn		
1675	Charles II founds the Greenwich Observatory in England		
1687	Newton publishes <i>Principia</i>		
1802	Herschel discovers Uranus and binary stars		
1865	Author Jules Verne publishes From the Earth to the Moon		
1895	Russian Konstantin Tsiolkovsky begins to write about space flight		
1898	Author H. G. Wells publishes War of the Worlds		
1903	Wright Brothers make first-ever powered flight at Kitty Hawk, NC		
1915	NACA (National Advisory Committee for Aeronautics) is created		
1926	Robert Goddard launches first successful liquid-fuel rocket		
1929	Edwin Hubble suggests the universe is expanding at an ever-increasing rate; develops velocity-distance relationship known as <i>Hubble's Law</i>		
1931	Amateur astronomer, Clyde Tombaugh discovers Pluto		
1942	First successful flight of the German V-2 rocket		
1945	Werner Von Braun's rocket team defects to the U.S. army and later comes to work with the U.S. Space Program		
1947	Chuck Yeager in the Bell X-1 breaks the sound barrier		
1957	USSR launches Sputnik I, the first satellite , starting a space race between the Soviet Union and the United States		
1958	President Eisenhower creates NASA (National Aeronautics and Space Administration)		
1959	NASA selects the first seven Mercury astronauts (Shepard, Glenn, Grissom, Slayton, Schirra, Cooper, Carpenter)		
1960	U.S. Echo 1, first experimental communication satellite is launched		
1961	Yuri A. Gagarin, a cosmonaut from the Soviet Union, becomes first human to orbit the Earth		

PROBLEMS, PROBLEMS, PROBLEMS (2)

SAILOR OF THE STARS

3. There are approximately 400 billion stars in our Milky Way Galaxy. That is a very big number. To fully understand how big, let's do some calculations. Let's pretend that one star were only as wide as your pinky finger, or 1 cm. And let's also pretend we could line up 400 billion stars of this size in a row. How long do you think the line would be? One mile? 10 miles? 100 miles? More? Fill in the chart below. Keep track of your zeros as the numbers get bigger.

Number of stars	Distance	Describe something of the same size or distance
1	1 cm	width of the pinky finger
100	100 cm or 1 M	a little less than the distance between your hands with your arms stretched out
100,000	1000 M = 1 KM or .66 miles	distance from your house to
1,000,000	6.6 miles	distance from to
1,000,000,000 one billion	6.6 x 1000 =miles	distance from to
400 billion	400 x 6600 = miles	If the distance around the earth at the equator is 25,000 miles, about how many times could you wrap the Earth with your line of stars? Picture your line of stars the size of your pinky extending into space. How far does it reach? (The distance to the moon is 238,857 miles.)

Just imagine! Astronomers have discovered millions of galaxies and are finding more each day. Many of these galaxies have even more stars than our Milky Way!!

- 4. The shuttle can carry approximately 59,600 pounds of payload (work to be completed). Numerous high schools, universities, and other institutions have requested to have their experiments carried aboard the shuttle. Already, the payload weighs 48,750 pounds.
 - a. What is the remaining payload capacity?
 - b. Your goal is to try to fill the shuttle as close to capacity as possible and to take as many canisters as possible. Which of the following experimental payload canisters can **not** be taken aboard the shuttle? Circle those you cannot take.

University X's canister weighs 2000 lbs Institution P's canister weighs 1575 lbs High School G's canister weighs 481 lbs University D's canister weighs 2965 lbs High School A's canister weighs 157 lbs University L's canister weighs 3600 lbs Institution T's canister weighs 4300 lbs High School M's canister weighs 295 lbs

SHUTTLE FOOD AND **BEVERAGE LIST (1)**

SAILOR O F THE STARS

Directions Look over this extensive list of foods and determine which foods you would like to eat while aboard the shuttle. Plan out a seven day menu, using your 7 DAY MEAL PLAN sheet.

FOODS ABBREVIATIONS

(**FF**) — Fresh Food (IM) — Intermediate Moisture (I) — Irradiated (NF) — Natural Form **(R)** — Rehydratable **(T)** — Themostabilized

BEEF

Beef w/BBQ Sauce (T) Beef, Dried (IM) Beef Patty (R) Beef Steak (I)

Beef Stroganoff w/Noodles (R) Seasoned Scrambled (R)

BREAD (FF)

BREAKFAST ROLL (FF)

BROWNIES (NF)

CANDY

Coated Chocolates (NF) Coated Peanuts (NF) Gum (NF) Life Savers (NF)

CEREAL

Bran Chex (R) Cornflakes (R) Granola (R) Granola w/Blueberries (R) Granola w/Raisins (R) Grits w/Butter (R) Oatmeal w/Brown Sugar (R)

Rice Krispies (R) **CHEDDAR CHEESE**

SPREAD (T)

Oatmeal w/Raisins (R)

CHICKEN

Chicken, Grilled (T) Chicken Salad Spread (T) Chicken, Sweet 'n Sour (R) Chicken, Teriyaki (R)

COOKIES Butter (NF) Shortbread (NF) CRACKERS, BUTTER (NF) NUTS

EGGS Scrambled (R)

Mexican Scrambled (R)

FRANKFURTERS (T)

FRUIT

Apple, Granny Smith (FF) Apple, Red Delicious (FF) Applesauce (T) Apricots, Dried (IM) Banana (FF) Cocktail (T) Orange (FF) Peach Ambrosia (R) Peaches, Diced (T) Peaches, Dried (IM) Pears, Diced (T) Pears, Dried (IM) Pineapple (T) Strawberries (R)

GRANOLA BAR (NF)

HAM (T)

Trail Mix (IM)

HAM SALAD SPREAD (T)

JELLY Apple (T) Grape (T)

MACARONI & CHEESE (R)

NOODLES AND CHICKEN (R)

Almonds (NF) Cashews (NF) Macadamia (NF) Peanuts (NF) Trail Mix (IM)

PEANUT BUTTER (T)

POTATOES AU GRATIN (R)

PUDDINGS

Banana (T) Butterscotch (T) Chocolate (T) Tapioca (T) Vanilla (T)

RICE

Rice w/Butter (T) Rice and Chicken (R) Rice Pilaf (R)

SALMON (T)

SAUSAGE PATTIE (R)

SHRIMP COCKTAIL (R)

SOUPS

Chicken Consommé (B) Mushroom (R) Rice & Chicken (R)

SPAGHETTI W/MEAT SAUCE (R)

TORTILLAS (FF)

TUNA Tuna (T)

Tuna Salad Spread (T)

TURKEY

Turkey Salad Spread (T) Turkey, Smoked (I) Turkey Tetrazzini (R)

VEGETABLES

Asparagus (R) Broccoli au Gratin (R) Carrot Sticks (FF) Cauliflower w/Cheese (R) Celery Sticks (FF) Green Beans & Broccoli (R) Green Beans/Mushrooms (R) Italian (R) Spinach, Creamed (R)

Tomatoes & Eggplant (T)

CONDIMENTS

Catsup (T) Mayonnaise (T) Mustard (T) Pepper (Liquid) Salt (Liquid) Tabasco Sauce (T) Taco Sauce (T)